
RPG NA - Optimisation Document
Identification Methods..2
Original State of the Project...2
Overview of Improvements...3
Graphics Case... 4

Extremely bad light complexity...4
Many complex meshes on screen at once.. 5

Levels of Detail.. 5
Culling and Instancing...6
Hierarchical Levels of Detail.. 7
Level Streaming...8

Problematic actor mobility... 8
Cascaded shadow maps... 8
Precomputed Visibility..8
Bad mesh UV density..9
Sub-optimal lightmap density..10
Many textures don’t have an optimal size... 10
Overlaps in texture coordinates... 11
Quad overdraw & Shader complexity..11

Gameplay Case.. 12
Simple game mechanics... 12
Converting Blueprint to C++... 12
Optimizing algorithms..13

Conclusion... 13

Optimisation Document
RPG - North America

Identification Methods
- Web resources used for documentation on optimizing in Unreal:

- Unreal Engine Game Optimization on a Budget
- Unreal Engine 4.27 - View Modes
- Unreal Engine 4.27 - Building Texture Streaming Data

- stat detailed is the most useful command for quick profiling. It shows FPS,
frame times, and a frame graph.

- General stress points are identified by playing in the editor.
- Once one is found, a build is made for in-depth analysis.
- For specific investigation, debug view modes are useful: light complexity,

lightmap density, shader complexity, quad overdraw, mesh UV density.
- Unreal Insights is the go-to tool to find bottlenecks, as well as precise values

for individual events in a frame.

Original State of the Project
- Game is GPU bound, with the FDeferredShadingSceneRenderer_Render

shader pass taking up most of the frame time.
- Stats are: 7.4FPS and 134ms frame time (with 124ms shader pass).

Unreal Insights session on a build of the game with no optimizations.

2

https://www.tomlooman.com/unrealengine-optimization-talk/
https://docs.unrealengine.com/4.27/en-US/BuildingWorlds/LevelEditor/Viewports/ViewModes/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/Textures/Streaming/Building/

Optimisation Document
RPG - North America

Overview of Improvements
- The following graph shows a list of the successive optimizations we made to

the project.
- The bars show the average time per frame at each step of the process.
- Each entry improves on the performance of the previous one.
- Key values are 33ms for 30FPS, 16ms for 60FPS, and 6.95ms for 144FPS.

3

Optimisation Document
RPG - North America

Graphics Case

Extremely bad light complexity

- Identification: Light complexity viewmode shows values for most of the
scene in the “Extremely bad” category.

- Resolution: Set all lights to static and bake the scene. This causes a problem
however, since static lights don’t cast shadows on dynamic actors such as the
player. This means it is necessary to pick which lights to set to static, and
which to keep as stationary.

- Result: 190FPS and 5.25ms frame time.

Exploration map with unbuilt lighting in light complexity viewmode.
(blue: good, white: extremely bad)

4

Optimisation Document
RPG - North America

Many complex meshes on screen at once

Levels of Detail
- LODs can be generated by the engine for any static mesh. This makes it

possible to render a huge amount of assets at once, while keeping the vertex
count low enough.

- Resolution: Create an asset action blueprint that makes it possible to
right-click any StaticMesh and select “Generate LODs” to automatically set
up 5 levels of detail. There are 3 quality settings: Low, Medium and High.
Currently, all meshes in the project are set up on Medium, but discussion
with the artists will be necessary to choose the right quality for each type of
mesh.

- Result: 210FPS and 4.75ms frame time.

Exploration map in LOD coloration viewmode.
(gray: original quality, red: lod1, green: lod2, blue lod3, yellow: lod4)

5

Optimisation Document
RPG - North America

Culling and Instancing
- Frustum Culling, Occlusion Culling and Mesh Instancing help tremendously

in this situation, and they are all enabled by default in Unreal Engine.
- Distance Culling, however, isn’t enabled by default. To enable it, we placed a

cull distance volume around the whole level and set up multiple distances at
which actors of different sizes should be culled.

- To optimize Occlusion Culling further, static meshes can be assigned a
specific LOD for occlusion testing. By default, this is set to 0 (max quality),
but we changed it to level 3 for all meshes.

- Commands used:
- r.visualizeoccludedprimitives 1

- stat initviews

- stat rhi

Exploration map from the vista at the end of the tutorial.
Green boxes show all the meshes that are occlusion culled.

6

Optimisation Document
RPG - North America

Hierarchical Levels of Detail
- To optimize culling and draw calls even further, HLOD actors can be

generated to group meshes together, creating proxy meshes. This way, they
can be culled together in a single check, or drawn together in a single call.

- Resolution: Enable Hierarchical LOD System in World Settings, then generate
HLOD clusters and proxy meshes.

- Problems:
- Many actors were not included in the HLOD system, as can be seen in

the picture below.
- Actors included in the HLOD system were never distance culled and

always rendered at LOD 0 (original mesh quality), because only that
level was baked into the proxy meshes.

- Result: Marginal improvement because of the problems mentioned above.
They were either the result of bugs in the HLOD system (it was improved in
UE5), or my potential lack of understanding of the feature. In the final build,
Hierarchical Levels of Detail are disabled.

Exploration map with HLODs enabled.
(gray: no HLOD, green: HLOD 0, blue: HLOD 1)

7

Optimisation Document
RPG - North America

Level Streaming
- Level Streaming is also a great way to keep the memory overhead low, by

unloading far away or not visible parts of the level. However, to implement
this, it would be necessary to section the current scene into multiple levels,
which would be very time consuming. Since the performance is sufficient
and the level designers are crunching, we decided against implementing this
optimization.

Problematic actor mobility

- The mobility for many meshes (mainly foliage) and lights was set to
“Movable”. As more and more were added to the exploration level,
performance dropped steadily on both CPU and GPU sides.

- Resolution: Make an ActorActionUtility script to set all selected static mesh
actors or lights to “Static” mobility.

Cascaded shadow maps

- To squeeze a little bit more performance out of dynamic shadows from
directional lights, cascaded shadow maps can be enabled. This reduces the
quality of faraway shadows to save on GPU computations, while still showing
very high-quality shadows up close.

- Resolution: Select a directional light and set appropriate settings in the
“Cascaded Shadow Maps” section of the details panel. The light must have its
mobility set to “Stationary” or “Movable”.

Precomputed Visibility

- In a game that uses many camera tracks, actor visibility can be precomputed
for frustum and occlusion culling. This saves the render thread some work,
while slightly increasing runtime memory usage and level build times.

- Resolution: In a scene’s world settings, enable “Precompute Visibility” and
choose an aggressivity level.

8

Optimisation Document
RPG - North America

Bad mesh UV density

- Identification: The mesh UV density viewmode shows values for many
temporary meshes in the “worst over/under” and “2x+ under” categories.

- This causes some performance issues, as well as problems with Lightmap
Density when building the scene’s lighting.

- Should be fixed with new final version meshes.

Exploration map in mesh UV density viewmode.

(cross-hatch: worst under/over, red: 2x+ under)

9

Optimisation Document
RPG - North America

Sub-optimal lightmap density

- Identification: Lightmap Density viewmode shows values for most of the
scene in the “Less than ideal texel density” category, which means the quality
of baked lights is sub-optimal.

- Resolution: Set the overriden lightmap resolution to an appropriate value for
each static mesh component in the scene. To automate this process, we
found the AutoLightmapAdjuster plugin, which we modified to get most
scene objects into the “Ideal texel density” category.

Exploration map before and after the execution of the plugin.
(blue: less than ideal density, green: ideal density, red: greater than ideal density)

Many textures don’t have an optimal size

- Textures should be square and have a size that is a power of 2 for best
compatibility and performance.

- Most UI textures have arbitrary size, which could cause performance issues if
many were present on the screen at once. However, this isn’t the case, and
most mesh textures have an optimal size, which is the most important.

10

https://github.com/alexismorin/Auto-Lightmap-Adjuster

Optimisation Document
RPG - North America

Overlaps in texture coordinates

- Identification: Building the scene prompts many warning logs about UVs
overlapping in many temporary meshes.

- This should be fixed with new final version meshes.

Message logs for lighting build results

Quad overdraw & Shader complexity

- Identification: The quad overdraw viewmode shows a few values at or above
10 overdraws. Similarly, the shader complexity viewmode highlights some
problematic places.

- This is a very minor issue as it only happens with transparent objects. Those
are sparse in the scene and most aren’t rendered at all in game.

Exploration map in quad overdraw viewmode
(dark blue: 1 quad drawn, white: 10+ overdraws)

11

Optimisation Document
RPG - North America

Exploration map in shader complexity viewmode
(green: good, red: bad, white: extremely bad)

Gameplay Case

Simple game mechanics

- Our project has simple game mechanics that are not very performance
hungry. In the exploration scene, the game is still GPU bound, even after the
many graphical optimizations we added. TODO for the fight scene.

Converting Blueprint to C++

- The most efficient way to optimize the performance of an Unreal Engine
project is to convert slow behaviors from Blueprint to C++.

- One of our GDPs took the initiative to implement potentially slow behaviors
in C++, which already helped a lot with performance before we started
working on the project.

- To push this further, we could have translated a large portion of the codebase
as well, but we found it would be overkill and bug-prone, so we decided
against it considering the short deadline.

12

Optimisation Document
RPG - North America

Optimizing algorithms

- Another way to improve on the performance of Blueprints is to review and
optimize the algorithms used for gameplay.

- This is applicable mostly in the fight scene, where the opponent is driven by
an AI and random numbers are used intensively.

- This is where most of our coding force was spent, as we improved and
optimized the enemy AI, as well as refined the game mechanics offered to the
player.

Conclusion
In the end, we mostly worked on graphics optimizations, due to the

gameplay’s low performance needs, compared to the map’s size and level of detail.
We had to go back and forth and debate a lot with artists and designers on

lights and LODs to get the best looking result while optimizing for performance as
much as possible.

In the end, we came to the agreement that rectangle lights should only be
static so as to bring general lighting to parts of the map, while spot and point lights
should be stationary only when in range of the player. Finally, the directional light of
the moon is stationary, with cascaded shadow mapping enabled for best
performance with dynamic shadows all over the map.

LODs, on the other hand, are very aggressive on foliage and decor, while
being tuned down a lot for buildings, so as not to break the shape of windows.

To conclude, we managed to keep the game’s frames per seconds at a
reasonable level, while not sacrificing too much detail. It was a great learning
experience that pushed us out of our comfort zone and to new heights as
developers.

13

